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As protein databases continue to grow in size, exhaustive searchmethods that compare a query structure

against every database structure can no longer provide satisfactory performance. Instead, the filter-and-

refine paradigm offers an efficient alternative to database search without compromising the accuracy of

the answers. In this paradigm, protein structures are represented in an abstract form. During querying,

based on the abstract representations, the filtering phase prunes away dissimilar structures quickly so

that only a small collection of promising structures are examined using a detailed structure alignment

technique in the refinement phase. This article reviews mainly techniques developed for the filtering

phase.

Introduction
In structural bioinformatics, 3D structural comparison and struc-

tural database searching of proteins play very important roles. For

example, wemay search an unknown protein against a database of

functionally annotated proteins to infer its functions from those

found to be structurally similar to it. As another example, we may

also search an important structural motif through a protein struc-

ture database so as to retrieve the proteins that contain this motif.

Structural database searching has many applications in the area of

drug discovery. It can be used to verify the 3D structure of a drug

target modeled by structural prediction [1]. It can be used to

identify the similar structural folds and families unique to patho-

genic organisms to select good drug targets [2], etc.

In recent years, advances in laboratory methods (such as MNR

and X-ray crystallography) have contributed to a significant

increase in the number of known protein 3D structures. For

example, the Protein Structure Data Bank (PDB) [3] stored only

about 1000 structures in 1993. However, as of August 2007 it stores

over 45,000 structures. When the databases were small, exhaus-

tively searching a database by comparing the query structure

against each and every structure in the database was done with

acceptable performance. However, for large databases with tens of

thousands of structures, such an exhaustive searching approach

no longer provides a satisfactory response time. As such, much

research has gone into developing faster searching algorithms. In

particular, we can view these schemes as belonging to the filter-

and-refine paradigm.

Figure 1 illustrates the filter-and-refine paradigm. As seen in the

schematic drawing, the system introduces a preprocessing phase to

map each 3D protein structure into an abstract form (e.g.,

sequence of symbols or vectors) that can be manipulated more

efficiently, for example, comparing two proteins over their

abstract representations is much faster than comparing their 3D

structures. As a result, besides the original 3D protein structures, a

database of abstract representations is also maintained. In some

systems, additional data structures called indexes (such as suffix

tree, hash table, and inverted file) are created to facilitate speedy

access to the abstract representations. During querying, the query

structure is first transformed into its abstract representation (using

the same method used to map each object in the database). The

query answers are then returned in two phases:

1. In the filtering phase, based on the query abstractions, the

database of abstract representations is searched. We note that

this also requires a similarity measure to be defined for

comparing abstract representations. In this way, we can

quickly pick out proteins that are similar (under the abstract
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representations) to the query protein, while pruning away

those that are dissimilar. This filtering step can be done in two

ways: scanning all the abstract representations in the database

or exploiting the precomputed index structure to speed up the

retrieval process.

2. In the refinement phase, the potential answers identified in

the filtering step are refined by performing a detailed structure

alignment comparison between the original query structure

and each of the potential answers’ structure. Some of the more

popular detailed structure alignment schemes include SSAP

[4], COMPARER [5], DALI [6], VAST [7], STRUCTAL [8],

LSQMAN [9], LOCK [10], CE [11], and FATCAT [12].

By giving priority to speed, rapid search methods employed in

the filtering phase generally can offer only a moderate level of

accuracy when compared to detailed alignment methods. In other

words, the ranking of the answers may not be the same as that of a

detailed alignment scheme used in the refinement phase. In

addition, some of the rapid search methods such as [13–15]

provide only the overall similarity scores of a query protein with

respect to the database proteins, but not the detailed residue–

residue alignments of the query and database proteins. However,

by utilizing the speed advantage of a rapid search method in the

filtering phase and the accuracy advantage of a detailed alignment

method at the refinement phase, we can achieve a desirable out-

come: a fast yet accurate structural database searching.

As an indication of the power of the filter-and-refine strategy, let

us compare the performance of CE [11] (a detailed structure

comparison method) and Topscan [13] (a fast filter scheme based

on abstract representations) on a standard stand-alone Pentium IV

PC. CE takes 20 s to compare two proteins, and 800,000 s (nine

days!) to search through the entire PDB database with 40,000

proteins. On the contrary, Topscan requires only 0.025 s to com-

pare two proteins and 17 min to search through 40,000 structures.

Assuming 1000 of the top ranked proteins from the results of

Topscan are selected, the refinement process will take another

20,000 s, or five hours to find the most similar matches. We note

that as long as the answers returned by CE are within the top 1000

answers of Topscan, we will have a significant reduction in com-

putational cost without sacrificing the accuracy.

In this review, wewill look at rapid search techniques developed

for the filtering phase as this phase is particularly critical for the

overall speed of the filter-and-refine database search. Moreover,

there have been a number of survey papers and books that review

and/or evaluate various structural comparison techniques that can

be used in the refinement phase [16–22]. This review focuses on

fast techniques, and incorporates several recent works that have

not been previously reported. We will look at the abstractions that

have been used, the indexing methods designed to speed up

retrieval, and the similarity measures used in the abstract repre-

sentations. Box 1 summarizes some common abstract representa-

tions and concepts that we will use throughout this paper.

String-based methods
Several efforts have attempted to represent 3Dprotein structures as

strings (sequence of symbols). In this way, the well-established

sequence alignment algorithms can be tapped to compare the

proteins efficiently.

Secondary structure elements (SSEs)
In Topscan [13], the protein structure is represented as a sequence

of SSEs. To further increase the information content, each helix/

sheet is encoded with a symbol based on properties such as SSE
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FIGURE 1

The filter-and-refine paradigm for database search.
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type (helix, sheet), directions (up, down, left, right, backward,

forward), accessibility, proximity, length (short, long), and loop

length. For example, to capture only the directional information,

Topscan uses 12 symbols (6 for helix, 6 for sheet); if the length

information is further added, it will need 24 symbols. Topscan can

then apply the Needleman and Wunsch dynamic programming

algorithm [32] to align two linear symbolic strings. To compute

the similarity between two strings, Topscan also defines the simi-

larity between symbols using a scoring matrix similar to the PAM

and BLOSUM matrices used for protein sequence alignment. The

matrices, however, are obtained from empirical study conducted

over some specific datasets. For each pairwise comparison, Tops-

can requires a total of 24 alignments to permute the different

directions and orientations of the axes. The one that gives the best

alignment result is then selected as the answer. While this

improves its accuracy, it also led to Topscan’s being inferior to

(slower than) recently proposed techniques (e.g., SCALE [33] and

ProtDex2 [15]).

Five-residue-long structure fragment
Yang and Tung proposed 3D-BLAST for protein structure database

search [34]. 3D-BLAST represents a structure as a sequence of

symbols, each of which encodes a five-residue-long structure

fragment. In 3D-BLAST, there are 23 distinct symbols. These are

obtained using a large collection of structurally similar protein

pairs with low sequence identity as follows. (a) For each structure, a

set of five-residue-long fragments (with residues i � 2, i � 1, i, i + 1,

and i + 2) are extracted. (b) For each fragment, the (k, a)-pair angle

is obtained. (c) The (k, a)-pair angles are then clustered into 23

clusters. These clusters represent the pattern profiles of the back-

bone fragments of a protein. To facilitate similarity score compu-

tation, a 23 � 23 substitution matrix is defined based on the

observed and estimated probability of occurrences of each (i, j)

pair. A database search can then be performed by BLASTing (using

BLAST) over the encoded database. 3D-BLAST is the first scheme to

provide a function analogous to the E-value of BLAST to examine

the statistical significance of an alignment hit.

Geometric property
In TLOCAL [35] the key concept is the writhing number which

originated from the integral formulas of Vassiliev Knot invariants.

Given a protein structure, a sliding window is applied on the

protein chain to obtain a sequence of n consecutive a-carbons.

The writhing number for each such n consecutive a-carbons is

then determined. Based on the distributions of writhing numbers
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BOX 1

Secondary structure element (SSE)

A protein structure can also be characterized by its secondary
structure which is the general 3D form of local segments, called
secondary structure elements (SSEs), of the protein.
The a-helix and b-strand/sheet are the two most common types of
SSEs. The 310, p, and left-handed helices are special types of helices
which are typically treated as an a-helix [10]. The annotation of
SSEs is somewhat subjective. Most researchers use DSSP [23] or
STRIDE [24] as annotation tools. Both tools have been shown to
agree in their SSE annotations in 95% of the cases [25]. An SSE is
often modeled as a vector with length and direction obtained from
the N- and C-terminal Ca atoms. The main advantage of using SSEs
is that the size of a SSE-based structure is significantly smaller than
the residue-based structure.

Angles
Several types of angles have also been widely used in protein
database search. Consider five residues i � 2, i � 1, i, i + 1, and
i + 2. The k-angle, ranging from 08 to 1808 of a residue i is defined
as a bond angle formed by three Ca atoms of residues i � 2, i, and
i + 2. The a-angle, ranging from �1808 to 1808 of a residue i is a
dihedral (torsion) angle formed by four Ca atoms of residues i � 1,
i, i + 1, and i + 2. Angles between SSE vectors can also be defined
similarly. Angles are advantageous as they are invariant to
translation and rotation of the protein structure in the actual
coordinate system.

Distance matrix
A 3D protein structure can also be represented as a 2D distance
matrix. The distance matrix (DM) of a protein A with jAj residues is
an jAj � jAj matrix. The (i, j)-entry, DM(i, j), stores the interatomic
distance dij between the two Ca atoms i and j (1 � i, j � jAj) of the
protein. The interatomic distance is typically defined by the
Euclidean distance between the two atoms. The DM representation
is attractive because it is rotation and translation invariant, yet at
the same time it captures the same structural information as a 3D
representation (and can be used to construct the original 3D form
[26]).

Contact pattern
A contact pattern is a submatrix of the distance matrix that
captures the interatomic distances between the Ca atoms of two
SSEs. There are two types of contact patterns. The intrastructural
contact pattern reflects the distance between the Ca atoms of
every pair of residues of a single SSE. On the other hand, the
interstructural contact pattern captures the distance between the
Ca atoms of two different SSEs.

Index structures
To speed up query processing, several data structures can be used.
For strings, the suffix tree is commonly used [27]. The suffix tree for
a string S is a tree whose edges are labeled with strings, and such
that each suffix of S corresponds to exactly one path from the tree’s
root to a leaf. It is thus a radix tree for the suffixes of S. Once
constructed, locating a subsequence in S, locating a substring if a
certain number of mistakes are allowed, and locating matches for a
regular expression pattern can be performed efficiently.
Where proteins are represented as multidimensional points, then
point access methods are typically used [28].
Another structure is the inverted index (or inverted file) [29]. An
inverted file stores mapping from words to their locations in a
document or a set of documents, allowing full text search. By
treating a pattern as a word, and a protein structure as a document,
the inverted file can be readily adapted for biological domain.

Similarity measures
Different structural comparison and database search methods use
different criteria to measure the similarity between two protein
structures [17]. Usually, the similarity measure is dependent on the
abstraction used to represent protein structures and the
comparison method itself. For example, if a protein structure is
represented as a multidimensional vector, the similarity between
two proteins is calculated based on the similarity/distance (e.g.,
Euclidean, Cosine, Pearson, etc.) between two vectors. The validity
of a comparison method and its similarity measure can be tested
by benchmarking the results against the gold standard databases
such as SCOP [30] and CATH [31], or by the standard alignment
quality criteria such as root mean square deviation (RMSD).
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obtained from a collection of protein structures, the histogram is

partitioned into 20 bins and one alphabet is assigned to each bin.

To ensure that each alphabet captures approximately the same

fraction of observedwrithing numbers, themanner of partitioning

maximizes the information content as defined by Shannon’s

information entropy. Each writhing number is thus encoded by

an alphabet, and a protein structure by a sequence of alphabets. A

substitution matrix was also derived to facilitate comparison of

structures encoded by the geometric alphabets.

SSEs + contact patterns
Structure conscious alignment of secondary structure elements

(SCALE) [33] adopts SSE as the underlying representation. How-

ever, it computes the similarity between two matching subse-

quences of SSEs based on a matrix of SSE-vector-based dihedral

angles and distances (between midpoints of SSE vectors).

To speed up processing, it constructs a hierarchical index of SSE

triplets with three levels: (1) nodes with SSE triplet type (a a a,

a a b, etc.), (2) nodes with two SSE–SSE dihedral angle ranges, and

(3) nodes with two SSE–SSE distance ranges. Each third-level node

points to a leaf page containing the protein IDs in which the

corresponding triplets occur. When evaluating a query, the index

is used to find the IDs of the proteins containing a large enough

number ofmatching SSE triplets with respect to those in the query.

These candidate proteins are refined with a dynamic program-

ming-based SSE alignment algorithm, using the dihedral angle and

the distance properties of each SSE pair, and a scoring function

based on maximally common subsequence (MCS).

SSE triplets + angle
PROuST [36] also operates at SSE level, and attempts to align two

proteins over their SSE representations. However, to speed up

processing, it creates an inverted file as follows. For a structure

with n SSEs, say (p1, p2, . . ., pn), all valid SSE triplets are obtained. A

SSE triplet (pu, pv, pz) is valid if u< v< z. For each valid SSE triplet

(pu, pv, pz), the angles puv, pvz, and puz are obtained where pij
denotes the angle between SSE vectors pi and pj. Similarly, three

distances (based on midpoints of the SSE vectors) can be obtained

between the three SSE vectors of a triplet. The three angles of an

SSE triplet and an additional triplet type form a 4D key to proteins

in the database that has such a triplet pattern. The triplet type

indicates the composition of the triplets in terms of number and

position of helices and strands, and is used to resolve the ambi-

guity of comparing a segment representing a helix and one repre-

senting a strand. The distance information is used to further prune

away proteins that share similar triplet angles but have different

triplet distance. In this way, only protein structures withmatching

triplets (in terms of both angles and distance) as the query proteins

need to be aligned.

Protein substructure
Protein Structure Indexing using Suffix Trees (PSIST) [37] is a

string-based indexing method. The relationship between a pair

of residues is defined by the distance d between their Ca atoms and

the angle u between the normals to the triangles of N–Ca–C atoms

of the residues. Thus, a fragment of size w of a protein’s backbone

can be regarded as a vector with 2ðw � 1Þ dimensions: (d1, u1, d2, u2,

. . ., dw�1, uw�1). The attributes in this vector are normalized (dis-

cretized) to generate a structure-feature represented by an integer

symbol. Thus, a protein structure can be represented as a structure-

feature sequence (SF-sequence) with n� w þ 1 symbols. The

SF-sequences of all proteins in the database are used to construct

a generalized suffix tree (GST). Given a query and a feature distance

threshold e, the method first extracts the SF-sequence for the

query, and then performs searching, ranking and postprocessing.

The searching phase traverses the GST to retrieve all the matching

segments/subsequences from the database within a distance

threshold e per symbol. The ranking phase ranks all the proteins

by chaining the matching segments. The postprocessing step

further uses the Smith–Waterman sequence alignment algorithm

[38] to find the best local alignment between the query and the

selected proteins. The experimental results show that PSIST pro-

ducedmore accurate structural classification results than the other

methods such as geometric hashing [39] and PSI [40].

Angles
Polypeptide Angle Suffix Tree (PAST) [41] is another suffix tree-

based structural database searching scheme that employs fast

string matching. It represents a protein structure as a sequence

of angles, given by the dihedral (torsion) angle a. These angles are

further encoded into an alphabet by discretizing in intervals of size

3608/36 = 108. To speed up the retrieval process, PAST employs a

suffix tree to index the sequence of angle alphabets. In addition,

both exact match and approximate search are supported. For

approximate search, search paths involving neighboring charac-

ters (corresponding to neighboring angles) are also examined.

Component-based vector methods
Recently, attempts have been undertaken to represent protein

structures as vectors (i.e., a multidimensional point). In this

way, multidimensional indexing structures can be employed to

speed up the retrieval process. In this section, we look at methods

where the vectors are derived from the components (substruc-

tures) of a protein.

Contact patterns
Protein Indexing (ProtDex2) [15] extracts contact patterns of SSEs

from a 3D structure. The intuition is that proteins with similar

contact patterns are likely to be structurally similar. Since contact

patterns vary in size, ProtDex2 generates a set of fixed-sizematrices

from each contact pattern by applying a fixed-size sliding window

over the contact pattern. Therefore, each protein structure is

represented by a set of such fixed-sizematrices. To further compact

the representation, instead of storing thematrices, ProtDex2 stores

eachmatrix as a d-dimensional feature vector (v1; v2; . . . ; vd) where

each v1 approximates some statistical information of the matrix.

Statistics used in ProtDex2 include the angle and distance between

two SSE vectors, the mean and standard deviation of the Ca–Ca

distance in the contact pattern, and so on. In this way, structure

comparison is performed based on the feature vector. The simi-

larity measure adopted is a weighted sum of the similarity between

each component statistical information. To speed up the query

processing, an inverted file is constructed – from each vector, we

can determine the list of structures from which such a vector can

be extracted. Given a query structure, its set of feature vectors is

first extracted. The inverted index is then searched to pick out

Drug Discovery Today � Volume 12, Numbers 17/18 � September 2007 REVIEWS
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those relevant structures. This search process is done quickly using

a hash table to locate matching vectors. The set of proteins can

then be ranked based on the similarity measure. Thus, only

proteins that are similar will be retrieved, while dissimilar proteins

are pruned off when the inverted file is searched.

Protein substructure
Recently, Huang et al. developed a method to represent a protein

by its substructure, called patches [42]. The building block of a

patch is a bowtie, which comprises two vectors vi and v j where vi
and v j are vectors obtained from the Ca and Cb atoms of residues i

and j, respectively, and the distance between the Ca atoms of the

two vectors are within a certain threshold distance (15 Å is used). A

patch is a set of vectors such that all pairs of vectors in this set are

bowties. By fixing the size of the patch to k, a patch can be

represented as a (7k-10)-vector. Hence a dimensional index can

be used to support retrieval. The scheme preprocesses the database

of structures to generate all patches. This way, a query is evaluated

by searching for matching patches. As the dimensionality of the

vector is very high, the dimensionality is further reduced using

Singular Value Decomposition [43] and Locality Preserving Projec-

tion [44].

SSE triplets
Protein Structure Indexing (PSI) [40] represents a protein structure

as set of SSE triplets. Each triplet is encoded as a feature vector in a

six-dimensional space, describing three distances and three angles

among the SSEs in the triplet. Such feature vectors are extracted

from all protein structures in the database, and an R*-tree is built

on this feature space using Minimum Bounding Rectangles

(MBRs). When evaluating a query, the index is searched to quickly

find the database protein’s triplets that match those of the query.

Each matching SSE triplet pair is assigned a score based on inverse

root mean square deviation (RMSD) of the corresponding SSEs.

Then, the method constructs a triplet pair graph (TPG) with its

vertices corresponding to the aligned triplet pairs. An edge is

placed between two vertices if they share two SSE mappings. A

depth first search algorithm is used on the TPG to find the largest

weighted connected component (LWCC). The LWCC of the TPG

corresponds to the most similar subset of SSEs of database proteins

and the query SSEs. Then, a bipartite graph on LWCC is con-

structed with one set of vertices being the database protein’s SSEs,

and the other set being the query’s SSEs. The weight of an edge

shows how good the alignment is between the corresponding

vertices. Then, the method applies a largest weighted bipartite

graph matching to find the seed alignment of the SSEs. The

significance of each database protein’s seed alignment is evaluated

by a P value statistical model. Then, the detailed refinement using

the VASTmethod [7] is carried out on the database proteins whose

seed alignments are significant. PSI is reported to have improved

the pruning time of VAST 3–3.5 times while maintaining similar

sensitivity.

Structure-based vector methods
Unlike the component-based methods, under the structure-based

methods, the vectors are obtained from the entirety of the protein

structure. As such, the number of dimensions of the vector is

typically much higher.

Distance matrix
Protein database search (ProteinDBS) [45] is an image processing-

based method that exploits information stored in the 2D distance

matrix. It partitions each distance matrix into four diagonal bands,

and constructs distance histograms with the bin width of 10 Å. A

number of texture attributes, in particular energy, entropy, homo-

geneity, contract, correlation, and cluster tendency are also com-

puted from the distance matrix. The method maps a protein

structure into a multidimensional point whose features are the

histogram bin values and the texture attribute values. It stores

the multidimensional points representing the protein structures

in the database as an Entropy Balanced Statistical (EBS) k-d tree. The

EBS k-d tree is trained with a selected set of points (a subset of the

entire database) with the known SCOP [30] protein structure classi-

fication labels. The dimensionality of the points in the tree is

reduced by determining the discriminant features of the training

(labeled) points. This results in 23-dimensional points indexed in

the EBS k-d tree. A partial clustering based on the training points is

carriedout toobtain theoptimal structureof the tree. Inevaluatinga

query, a binary search is performed on the tree and finally the leaf

pages that contain the IDs of relevant proteins are returned as the

answer.Theanswerproteins are sortedbasedon their k-dimensional

similarity to the query. Themethod is reported to be very fast: it can

query a database of 46,075 protein structures in less than 10 s.

Projection-based vector methods
In projection-basedmethods, a database of 3D protein structures is

mined to extract p representative patterns. A protein structure can

then be represented by a p-vector whose i-dimension captures the

weighted number of times the pattern is observed in the structure.

As such, two protein structures are similar if they share similar

number of each pattern. This can be determined very efficiently

using distance metric between the corresponding vector represen-

tations of the structures (e.g., Euclidean, Pearson). While projec-

tion methods are essentially vector-based, they differ from

vector-based methods as they only exploit a subset of representa-

tive patterns.

In [46], a projection method is proposed. There, a triplet of SSEs

is adopted as the pattern that models the structural fragment.

Essentially, each SSE is approximated by a positional vector in 3D

and the spatial conformation of an SSE triplet is represented by the

relative orientation of the corresponding SSE vectors (i.e., all

pairwise angles and distances between the midpoints of the cor-

responding SSE vectors). Using a representative set of protein

structures in the database, all their SSE triplets are extracted. These

SSE triplets are then organized into eight groups based on their SSE

types (a a a, a a b, . . ., b b b). The K-mean clustering algorithm is

then used to cluster the triplets within each group. In total, p

clusters are generated, and hence p representative patterns (the

cluster centers) are derived. Now, for each database protein, its SSE

triplets are extracted, and each triplet is then assigned to one of the

p patterns. The protein is then represented as a p-vector, where the

ith dimension denotes the weighted number of SSE triplets that is

similar to the ith pattern. Two protein structures are similar if they

have matching vectors. In the work, the distance between two

vectors is measured using the Pearson correlation coefficient.

The effectiveness of projection methods depends on the num-

ber of patterns/clusters that are used as models. Moreover, new
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structural fragments (or SSE triplets) derived from newly discov-

ered proteins may not be represented unless the models are

recomputed.

Histogram-based methods
Probability of identity (PRIDE) is a histogram-based scheme whose

histograms are obtained from the distancematrix of a protein [14].

It defines a residue position difference n, and calculates all the

distances between residues i and i + n to construct a distance

histogram. In this way, given a particular n value, it can generate

a histogram on the distribution of distances between residues that

are n atoms apart. The width for each bin in the histogram is set to

0.5 Å. The probability of identity (PRIDE) score of two histograms

(representing two protein structures) is assessed by contingency-

table analysis based on x2 test. The x2 value is calculated based on

the distributions of the values in the m number of bins of the two

histograms. The probability of the two distributions being iden-

tical is read from the corresponding x2 distribution of m � 1

degrees of freedom. In the method, 28 histogram pairs (with

n = 3–30) are constructed, and the 28 PRIDE scores are averaged.

The PRIDE score is reported to observe the metric properties (non-

negativity, identity, symmetry, and triangular inequality) in most

of the cases, and be highly correlated to the conventional RMSD

measure. PRIDE is an example of nonalignment-based structural

comparison method. The method is reported to be very fast.

Graph-based representation
It is also common to find searching techniques that represent

structures as graphs. As graphs have been widely studied in the

computing/mathematics literature, many known properties can

be exploited to speed up the retrieval process.

Residues
k-Clique hashing [47] exploits both the accuracy advantage of

maximum clique detection-based techniques and the efficiency of

geometric hashing techniques. The method represents a protein

structure as a graph with its residues as nodes. If the distance

between two nodes is less than 12 Å, an edge is inserted between

them. Each node is labeled with the physico-chemical properties

of the residue center, and each edge is labeled with the distance

between the residues. Protein structure comparison using graph

representation generally applies maximum clique (complete sub-

graph) detection in the node-product graph of the two input

graphs in order to find the largest common isomorphic subgraph

of them [7,48,49]. Maximum clique detection is very compute-

intensive with most of the time being spent on the elimination of

false positive matches of nodes and the assembling of real matches

into larger matching. The k-clique hashing method addresses this

problem by introducing larger matches of size k which leads to a

much simpler node-product graph and a faster assembly process.

The method subdivides all graphs for proteins in the database into

k-cliques (k = 3 is used as default); maps them as a point into a

Euclidean space; and indexes them using an R*-tree (which can be

regarded as a hash table with variable-sized cells based on the

points’ distribution). When a query is evaluated, the index is used

to find the matching k-cliques of the database proteins to those of

the query. The matching k-cliques for each database protein are

assembled into a larger clique by combining the overlapping

k-cliques. To reduce the number of false positives in this assembly

step, a heuristics (called hits list voting) is used.

SSE vectors
Secondary Structure Matching (SSM) [50] represents a protein as a

complete graph of SSE vectors. Each node is an SSE vector, and

each edge between two nodes represents certain information

between the two SSEs. These include two angles, two torsion

angles, distance, and connectivity information. The correspond-

ing SSEs between the two graphs, representing two protein struc-

tures, are identified by a rapid common subgraph isomorphism

algorithm called CSIA with the time complexity of O(mn+1n),

where m and n are the number of nodes (SSEs) in two graphs.

This algorithm is much faster than the conventional algorithm
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TABLE 1

List of rapid protein structure database retrieval methods described in this review

Method Year of publication References How to access/obtain

Topscan 2000 [13] http://www.bioinf.org.uk/topscan/

3D-BLAST 2006 [34] http://3d-blast.life.nctu.edu.tw/

TLOCAL 2006 [35] Contact T. Gregory Dewey (greg_dewey@kgi.edu)

SCALE 2005 [33] Contact K.-L. Tan (tankl@comp.nus.edu.sg)

PROuST 2004 [36] Please see reference

PSIST 2005 [37] Please see reference

PAST 2006 [41] http://past.in.tum.de/

ProtDex2 2004 [15] http://www1.i2r.a-star.edu.sg/�azeyar/genesis/ProtDex2/

Huang et al. 2006 [42] Please see reference

PSI 2004 [40] http://bioserver.cs.ucsb.edu/proteinstructuresimilarity.php

ProteinDBS 2004 [45] http://proteindbs.rnet.missouri.edu/

Zotenko et al. 2006 [46] http://www.biomedcentral.com/content/supplementary/1472-6807-6-12-s12.tar

PRIDE 2002 [14] http://hydra.icgeb.trieste.it/pride/

k-Clique Hashing 2004 [47] Contact E. Hullermeier (eyke@mathematik.uni-marburg.de)

SSM 2004 [50] http://www.ebi.ac.uk/msd-srv/ssm/
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with the complexity O[(mn)n]. Then, the initial alignment of the

corresponding SSEs is carried out by a fast optimal superposition

procedure. This initial alignment is iteratively refined and

expanded into the final one (at the residue level) by a combination

of five techniques: (1) mapping Ca atoms of matched SSEs, (2)

mapping Ca atoms of the nonmatched SSEs, (3) expansion of Ca

atom contacts, (4) quality filter using a quality scoring function

based on RMSD and the number of aligned residues, and (5)

unmapping short fragments. The significance of the alignment

is evaluated with statistical means, viz., P value and Z score. SSM is

reported to be quite fast and pretty accurate [19].

Conclusion
In this review, we have looked at techniques that have been devel-

oped to speed up structure database search. The basic approach is to

represent protein structures in an abstract form that is more com-

putationally efficient to process. Once potentially similar proteins

have been identified, a detailed structure alignment scheme can be

applied to further refine the answers. Many of these schemes have

been shown to be efficient, without sacrificing the accuracy in

comparison to the detailed structure alignment techniques.

Table 1 summarizes the techniques that we have discussed.

Due to space limitations, this review is by nomeans exhaustive.

Other methods worthy of mention include: structure shape-based

method [51], wavelet-based method [52], graph-based methods

[48,49,53,54], geometric hashing schemes [39,55], cartoon repre-

sentation [56], SSE–SSE interaction matrices [57], probabilistic SSE

matching [58], topological representation [59], and residue pairing

[60].

It should be noted that the area of index-based structural

database searching is relatively immature and none of the meth-

ods is known to be widely used at present.We hope this reviewwill

prompt biologists and researchers in the drug discovery commu-

nity to find these techniques useful in their work.
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