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Detection of ligand-binding sites in protein structures is a crucial task in structural
bioinformatics, and has applications in important areas like drug discovery. Given the
knowledge of the site in a particular protein structure that binds to a specific ligand,
we can search for similar sites in the other protein structures that the same ligand is
likely to bind. In this paper, we propose a new method named “BSAlign” (Binding Site
Aligner) for rapid detection of potential binding site(s) in the target protein(s) that
is/are similar to the query protein’s ligand-binding site. We represent both the binding
site and the protein structure as graphs, and employ a subgraph isomorphism algorithm
to detect the similarities of the binding sites in a very time-efficient manner. Preliminary
experimental results show that the proposed BSAlign binding site detection method is
about 14 times faster than a well-known method called SiteEngine, while offering the
same level of accuracy. Both BSAlign and SiteEngine achieve 60% search accuracy in
finding adenine-binding sites from a data set of 126 proteins. The proposed method can
be a useful contribution towards speed-critical applications such as drug discovery in
which a large number of proteins are needed to be processed. The program is available
for download at: http://wwwl.i2r.a-star.edu.sg/~azeyar/BSAlign/.

Keywords: protein structure; ligand-binding site; efficient binding site detection; sub-
graph isomorphism; adenine-binding sites.

1. Introduction

Proteins are the physical basis of life, and perform a number of vital functions such
as storage, structural lattice, movement, transport, signaling, immunity, catalysis
in metabolism, etc. A ligand is a specific compound that binds to a particular
receptor protein to form a complex. It can inhibit, promote, or alter the function of
the receptor protein. A ligand can either be another protein or a non-protein small
molecule. Drugs are examples of small molecule ligands.

A ligand-binding site is a region in a receptor protein structure to which a ligand
binds. Binding site detection is a task in which, given the knowledge of the binding
site in a particular protein structure a specific ligand binds to, we detect in the other
protein structure(s) for the site(s) with the similar structural and physicochemical
characteristics, where the same ligand is likely to bind — as illustrated in Figure 1.
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Fig. 1. Detection of a potential binding site similar to the query binding site.

This is a crucial task in structural bioinformatics, and has important applications
in the area of drug discovery. In particular, binding site detection is a very useful
mechanism for identifying the new drug targets and developing the targeted drug
leads like inhibitors [20]. In addition to drug discovery, binding site detection is also
useful for protein function prediction [14].

In this paper, we propose a new method named “BSAlign” (Binding Site
Aligner) that detects the potential site(s) in a target protein that is/are simi-
lar to the query binding site where a specific ligand is know to bind. The method
is designed to compare a query site against the similar site(s) in a single target
protein, but can easily be adapted to search for potential sites in multiple target
proteins.

The BSAlign method represents both the query binding site and the target pro-
tein structure as graphs. The graph representation scheme that we use captures
information on both the geometrical conformations and the physicochemical prop-
erties of amino acid residues in the query and the target. Then, the method applies a
subgraph isomorphism algorithm to find the maximum common subgraph(s) of the
input graphs. The subgraph isomorphism problem can be effectively solved by trans-
forming the two input graphs into an edge-product graph, and finding the maximum
clique(s) or the fully-connected subgraph(s) in the edge product graph [9, 12]. From
the maximum clique(s), the list(s) of maximally matching residue pairs is/are ex-
tracted. After that, those list(s) of matching residue pairs is/are refined with respect
to a scoring function in order to yield the final list of optimally matching/aligned
residue pairs. Depending on the size and density of the input graphs, the method
automatically tunes the matching criteria of the graphs’ vertices and edges on the
fly so as to avoid a lengthly subgraph isomorphism process.
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We tested our method by detecting the adenine-binding sites in a data set of
126 protein structures. The experimental results show that BSAlign can detect
the potential binding sites for adenine-containing ligands efficiently and effectively.
BSAlign is compared against another state-of-the-art binding site detection method
named SiteEngine [20]. It is observed that BSAlign is 14 times as fast as SiteEngine
while providing as good accuracy (60%) as SiteEngine. Since speed is a crucial fac-
tor for applications like drug discovery, which involve large quantities of ligands,
ligand-binding proteins and potential target proteins [3], the efficiency of our pro-
posed BSAlign method can be an important contribution towards such speed-critical
applications.

2. Related Works

The problem of binding site detection is related to that of protein substructure
alignment since both involve identifying a region similar to the query substructure in
the target protein. However, the generic substructure alignment methods such as [5,
7, 19] cannot be effectively used for binding site detection, because they take only
the geometrical properties of residues into account, but not their physicochemical
attributes, which are essential in identifying the ligand-binding residues.

A number of algorithms dedicated to binding site detection/prediction have
been proposed. The methods such as [1, 11, 14] predict potential binding sites on
the surfaces of proteins without an a priori knowledge of a similar binding site. On
the other hand, the methods such as [4, 8, 17, 18, 20] detect the target protein’s
potential binding site(s) which is/are similar to the query binding site.

ASSAM [4] represents residue side-chains as pseudo-atoms, and performs sub-
graph isomorphism to detect the side-chain patterns common to a set of binding
sites. eF-site [8] and Cavbase [18] represent a binding sites as a set of detailed sur-
face points and pseudocenters (selected atoms) in residues respectively, and apply
subgraph isomorphism to find the similar binding sites. However, given the usually
large quantities of objects (surface points or pseudocenters) in a query binding site
and a target protein and the complexity of the subgraph isomorphism problem,
which is NP-hard [15], these methods are not time-efficient.

SiteEngine [20] represents a binding site as a set of pseudocenters (as in
Cavbase [18]), and applies geometric hashing to detect the binding site similar-
ities. Being based on the efficient geometric hashing technique, it is faster than
Cavbase. However, its time efficiency is still inadequate when a large amount of
query binding sites and target proteins are to be processed, as usually needed in
the case of drug discovery [3].

A recently proposed method, SiteAlign [17], encodes binding sites as fixed-length
cavity fingerprints, and performs a time-efficient comparison on these fingerprints.
No accuracy comparison of SiteAlign with those of the other methods is available.
However, in general, the accuracy of fingerprint-based comparison methods tend to
be lower than those of detailed comparison methods [21].
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Our objective is to overcome the shortcomings, either in terms of time efficiency
and accuracy, of the abovementioned methods. In order to achieve a better time
efficiency, we adopt a residue-based approach, as opposed to the finer-grained ap-
proaches [8, 18, 20], which use sub-residue information like surface points or pseu-
docenters. On the other hand, in order to achieve the same level of accuracy as
those finer-grained methods, we carefully design our residue-based graph represen-
tation scheme to encompass enough geometric and physicochemical information,
and employ subgraph isomorphism for a detailed graph comparison. Our prelimi-
nary experimental results show that we have achieved our objective, and come up
with a solution that is much faster than the fastest of the finer-grained methods,
namely SiteEngine [20], while maintaining the same level of accuracy.

3. The BSAlign Method
3.1. Graph Representation

The input to the BSAlign algorithm are the query binding site and the entire target
protein structure. We can define a binding site as a set of residues that are inter-
acting with the ligand in question. A residue is considered to be interacting with
the ligand if it is within 5A radius from the ligand [13].

Both the query binding site and the target protein structure can be represented
as graphs. Since the sequence order of residues is irrelevant in comparing and detect-
ing binding sites [6], the graph representation, which is sequence-order independent,
is best suited for our purpose. We use a residue-based graph representation scheme
which captures information on both geometrical and physicochemical properties of
the amino acid residues. Each residue is encoded as a vertex in the graph. Two
vertices, representing two residues, are connected by an edge if these two residues
are close enough to each other, i.e., the distance between their Ca atoms is less
than or equal to 15A (an empirically determined value). A vertex is characterized
by a vertex label which comprises of the following attributes:

(1) Solvent accessibility of the residue as a percentage (0~100%) (denoted as SA),

(2) Physicochemical type (non-polar, polar, aromatic, positive, or negative) of the
residue (PT), and

(3) Secondary structure type (helix, sheet, or loop) of the residue (SS5).

An edge connecting two vertices (residues) is characterized by an edge label com-
prising the following attributes:

(1) Distance between the Ca atoms of the two residues (DC) and
(2) Angle between the Ca—Cf3 vectors of the two residues (AN). (A Ca—Cg vector
is an imaginary line segment connecting the Ca and the C3 atoms of a residue.)

Among these attributes, PT, DC and AN can be derived simply from the PDB
files (http://www.rcsb.org), and SA and SS can be obtained by using the DSSP
program (http://swift.cmbi.kun.nl/gv/dssp/).
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3.2. Graph Similarity

The similarity between two graphs can be determined by finding the maximum
common subgraph in them. The larger the common subgraph, the more similar the
two given graphs are. The maximum common subgraph problem can be solved by
transforming the two input graphs into a single edge-product graph and finding the
maximum clique (fully-connected subgraph) in that edge-product graph [9, 12].

3.2.1. Edge-product Graph Construction

Let G be a graph of any kind defined as G = (V, E) where V is the set of vertices and
E is the set of edges in G respectively. We can express V as {v; |i = 1...|V|} where
|V| is the number of vertices in G. Similarly, was can express F as {e;|i =1...|E|}
where |E| is the number of edges in G. An edge e; can in turn be expressed as
e; = (a;,b;) where a;,b; € V are the two vertices connected by e;.

An edge-product graph GP of two input graphs G1 = (V1,FE1l) and G2 =
(V2, E2) is defined as GP = (VP, EP) = (E1 x E2) in which:

e The vertex set VP of the product graph consists of all the compatible edge
pairs in E1 and E2. That is, vp; = (el,, e2;) if:

— EC(el,,e25) = TRUE, and
- (VC(aly,a2,) = TRUE A VC(bl,,b2,) = TRUE) Vv
(VC(al,,b2,) = TRUE A VC(bl,,a2s) = TRUE)

o There exists an edge between two vertices vp; = (el,, €2;) and vp; = (ely, €2,,)
of the product graph if:

— (el #ely) N (€25 # €2,,), and
— Either:

* (el, and el; have a common vertex vl,;) A (e24 and €2, have a com-
mon vertex v2g,) A (VC(vl, v24,) = TRUE), or

x (el, and ely; do not have a common vertex) A (€2, and €2, do not
have a common vertex)

The vertex compatibility function VC of the two vertices of v; from G1 and v;
from G2 is defined as:

TRUE if (|’U1;S’A—’U]SA‘ < TlSA)\/
((l’UzSA—’UJSA| < TQSA)/\ (1)
(v;.PT = Uj.PT) A (UZSS = ’U]SS))

FALSE otherwise

VC(’UZ',’U]') =

where Tlgy and T2g4 are the two threshold values for the differences in solvent
accessibility. T1g4 is usually a very small value, and T2g4 is a relatively larger
one. The meaning of the function VC(v;,v;) is that the two vertices (residues) v;
and v; are regarded as compatible if either their solvent accessibility percentages



70 Z. Aung & J. C. Tong

are very close, or their accessibility percentages are close enough, and both of their
physicochemical types and secondary structure types are respectively the same.

Similarly, the edge compatibility function EC' of the two edges e; from G'1 and
e; from G2 is defined as:

EC(e;,e5) = (lei. AN —e;., AN| < Tan)) (2)
FALSE otherwise

where Tphc and Ty are the threshold values for the differences in Ca—Ca dis-
tances and (Ca—Cp)—(Ca—Cf) angles of the two residues respectively. The function
EC/(e;, e;) means that the two edges e; and e; are compatible if their distance and
angle values in one edge are not very different from their counterparts in the other.
After we have constructed the edge-product graph, the next step is to detect
the maximum clique(s) in it. Since maximum clique detection is an NP-hard prob-
lem [15], this will be the most time-consuming step in the BSAlign algorithm. In
order to reduce the time taken for this step, we have to keep the size of the edge-
product graph reasonably small. So, if required, we iterate the edge-product graph
construction process up to 5 rounds with stricter threshold values for T1g4, T2g 4,
Tpc and T4y at each time. We stop the iteration when number of edges in the edge-
product graph becomes less than 1,000,000. For the first round, we use T1g4 = 0.05,
T2s4 = 0.30, Tpc = 2.0 and Ty y = 30. For the second round, we use T'1g4 = 0.04,
T2s4 = 0.25, Tpc = 1.5 and T4y = 25, and so on. For the last (fifth) round, we
use T1lga = 0.01, T2g54 = 0.10, Tpc = 0.01 and Ty = 10. All of these values are

empirically determined.

3.2.2. Mazimum Clique Detection

After the final edge-product graph is obtained, we use the Cliquer program [15] to
detect the maximum clique(s) in it. Cliquer is an implementation of a branch-and-
bound maximum clique detection algorithm [16]. A brief description of the Cliquer
algorithm as described in [15] is as follows:

The algorithm assume some order for the vertices V = {v,va,.. .,U‘V|}. Let
S; = {v1,v2,...,v;} C V. The function ¢(7) is defined to be the size of the maximum
clique in the subgraph induced by S;. Obviously, for every ¢ = 1,...,|V| —1, we

have either ¢(i 4+ 1) = ¢(i) or ¢(i + 1) = ¢(¢) + 1. Moreover, c¢(i+ 1) = ¢(é) + 1 if and
only if there exists a clique in S; ;1 of size ¢(i) + 1 that includes vertex v;41. Cliquer
calculates the values of ¢(i) starting from ¢(1) = 1 up, and stores the values found.
This enables a pruning strategy not found in older clique detection algorithms.
Namely, when Cliquer is calculating c¢(i 4+ 1) (that is searching for a clique of size
¢(i)+ 1 within S;11), and it has formed a clique W and is considering adding vertex
vj, it can prune the search if |W| + c(j) < c(4). Trivially, if it finds a clique of size
¢(1)+1, it can prune the whole search and start calculating ¢(i +2). When searching
for all maximum cliques, Cliquer first determines the size of the maximum cliques,
then starts the search again at the suitable position.
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3.2.3. Matching Residue Pair Generation

The maximum clique(s) produced by Cliquer is/are mapped back into the list(s) of
matching vertex pairs by using the Hungarian maximal assignment algorithm [10].
From the list of matching edge pairs, the algorithm produces the maximum possible
number of matching vertex (residue) pairs — as exemplified in Figure 2. The im-
plementation of the Hungarian algorithm is adapted from the one described in [22].

Matching Edge Pairs Matching Vertex Pairs

(query) (target) (query) (target)
1 - 53
1,2 - 53,55 2 - 55
1,8 - 51,53 8 - 51
2,3 - 55,57 = 3 - 57
3,4 - 57,60 4 - 60
4,5 - 58,60 5 - 58
7,9 — 54,56 7 - 54
9 - 56

Fig. 2. An example of mapping matching edge pairs into matching vertex pairs.

3.3. Refinement and Scoring

The two sets of matching (aligned) residue pairs are tested for their actual struc-
tural similarity using the root mean square deviation (RMSD) criterion. RMSD is
calculated by superimposing the set of Ca atoms of the aligned residues in the query
binding site onto their counterparts in the target protein. The smaller the RMSD,
the more structurally similar the two sets of aligned residues are. However, in some
cases, the RMSD values are quite large if all of the aligned residue pairs are taken
into account. Therefore, we iteratively refine the initial list of aligned residue pairs
by removing at each step the pair that is least fitting when superimposed. But, on
the other hand, we should not remove too many pairs, because the alignment result
will not be very meaningful if number of aligned residues is too small. In other
words, we must balance the RMSD value the number of aligned residues in order
to get the optimal alignment results. For that, we use Alexandrov and Fischer’s
scoring function [2], which is defined as:

3 x No. of aligned residues 3)
1+ RMSD
The refinement of the alignment is repeated until the alignment score cannot

Alignment score =

be further increased, or until the number of aligned residues is equal to one-third
of the number of residues in the original query binding site. Then, the final set
of aligned residues in the target protein is reported as the potential binding site.
Sometimes, there are more than one maximum clique in the edge-product graph,
and consequently, more than one initial lists of aligned residues exist. In such a
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Fig. 3. Outline of the BSAlign method.

case, we refine all the available lists, and take the one that gives the highest final
alignment score as the answer.
The steps taken in the BSAlign method are summarized in Figure 3.

4. Results and Discussions

Following the experiment described in [20], we test BSAlign by searching for
the binding sites similar to the ATP-binding site of an adenine-binding pro-
tein “latp” in a data set of 126 proteins listed in Table 1. The data set con-
sists of 34 adenine-binding proteins belonging to 18 distinct SCOP Folds, and
92 proteins of other functional types from 21 distinct SCOP Folds. (SCOP —
http://scop.mrc-1mb.cam.ac.uk/scop/ is a database for structural classification
of proteins. If two proteins belong to different SCOP Folds, they are very diverse in
terms of their whole structures.) Adenine-binding proteins are a functional type of
protein that binds to adenine-containing ligands like ATP, ANP, FAD, NAD, etc.



Rapid Graph-based Algorithm for Detecting Ligand-Binding Sites 73

Table 1. The data set of 126 proteins (34 adenine-binding proteins and 92 other proteins).

Functional Type Total SCOP Folds PDB IDs

Adenine-binding 34 18  1a49, 1a82, lads, latp, layl, 1b4v, 1b8a, 1bx4,

proteins 1byq, lcsc, lcsn, le2q, 1le8x, 1f9a, 1lfmw, 1gbt,
1gn8, 1lhck, 1hpl, 1j7k, 1jjv, lkay, 1kp2, 1kpf,
1mjh, Immg, 1nhk, 1nsf, 1phk, 1qmm, lyag, 1zin,
2src, 9ldt

Other proteins 92 21  1a27, 1ab2, labi, lacb, lalq, larb, lazm, 1b56,
1b6o, 1btb, 1cbs, 1cho, 1com, lcqq, lcse, lcsm,
1dbf, 1dcs, le6w, lecm, lela, lelc, lequ, lere,
lerr, lexm, 1fby, 1fds, 1fem, 1flj, 1fnj, 1fnk, 1ftp,
1gby, 1ghp, 1gx9, lhah, lhar, 1hms, 1hne, lhsg,
lhsh, lhwr, lifc, 1jdO, 1jgl, lkeq, lkop, lkqw,
1kzk, 112i, 11hu, 1lib, 1lid, 1lie, 1lvo, 1mbm, 1mdc,
1mml, 1mu2, 10hO0, lopa, lopb, 1pek, 1pmp, 1ppf,
lpro, 192w, 1lqjg, lgkt, lrxf, lsbn, 1sga, lsgc,
1tgs, 1tyr, 1vrt, 1whs, lysc, lznc, 2alp, 2cbr, 2ifb,
21lbd, 2lpr, 3ert, 3prk, 3sga, 3tec, 4csm, 4sgb, 4tgl

Total 126

4.1. Search Accuracy

Using the BSAlign algorithm, the query ATP-binding site of latp is compared with
every protein structure in the data set of 126 proteins in order to detect the similar
binding sites in them. Then, the found binding sites are ranked by their alignment
scores (Equation 3). We assess the ranking results by using the same evaluation
criterion as described in [20]. We examine the 15 top ranking binding sites, and ob-
serve that 9 out of 15 (60%) belong to the adenine-binding proteins with the ligand
ATP or the other adenine-containing ones (such as ANP and AP5) — as shown in
Table 2. BSAlign’s accuracy performance is as good as that of SiteEngine [20], which
is a finer-grained method that takes the sub-residue information (namely pseudo-
centers) into account. SiteEngine also ranks 9 adenine-binding proteins among its
top 15 answers. Among the two sets of 15 top ranking proteins by BSAlign and
SiteEngine, 8 of them (latp, lcsn, 2sre, 1phk, 1chk, ajd0, 1mjh, and 1nsf) are com-
mon to both sets.

Now, let us study the details of the alignment results. We take the alignment
result for the binding sites of the proteins latp and lcsn as an example. The ATP-
binding site of latp comsists of 13 residues: 50(G), 51(T), 52(G), 53(S), 54(F),
55(G), 57(V), 7T0(A), 122(Y), 123(V), 170(E), 171(N), and 184(D). Among these 13
residues, 10 are aligned with their counterparts in lcsn, with the RMSD of 0.48A.
The aligned residue pairs are: 50(G)-19(G), 52(G)-21(G), 53(S)-22(S), 55(G)—
24(G), 57(V)—26(I), 70(A)-39(A), 123(V)-88(L), 170(E)-135(D), 171(N)-136(N),
and 184(D)-154(D). It turns out that all of these 10 aligned residues in lcsn are
within 5A radius of the ligand ATP bound to the protein. The two ATP-binding
sites of latp and lcsn are illustrated in Figure 4.
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Fig. 4. ATP-binding sites of latp (left) and lcsn (right). Number of aligned residues = 10; RMSD
= 0.48A. The residues that involve in the alignment are shown as space-filling balls in both proteins.

4.2. Running Time

We compare the running times of SiteEngine and BSAlign by executing them on
the same personal computer with Pentium D 3.2GHz CPU and 2GB main memory.
For the aforementioned task of searching the data set of 126 proteins with the
query binding site for the ligand ATP in the protein latp, SiteEngine takes a total
of 12,010 seconds (3 hours, 18 minutes, and 10 seconds), whereas BSAlign merely
takes a total of 871 seconds (14 minutes and 31 seconds). Thus, BSAlign is found to
be about 14 times faster than SiteEngine while offering the same level of accuracy.

The comparable accuracy performance of the time-efficient residue-based
BSAlign to that of the slower finer-grained SiteEngine can be attributed to (1)
BSAlign’s comprehensive graph representation scheme which captures the detailed
physicochemical and geometric properties of the binding site and (2) the subgraph
isomorphism process which ensures the complete matching of the two large sub-
structures (rather than combining multiple partial matchings of the smaller sub-
structures — as in the case of geometric hashing used by SiteEngine).

5. Conclusion

In this paper, we have presented a new ligand-binding site detection method named
BSAlign, which is based on residue-based graph representation and subgraph iso-
morphism. Preliminary experimental results show that the method is about 14 times
faster than the well-known SiteEngine method, while offering the same level of accu-
racy. This can be an important contribution towards the drug discovery applications
where speed is critical. As a future work, BSAlign will be tested against diverse sets
of protein families in order to further ascertain its accuracy and speed performances.
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