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Abstract 
 
We present a new scheme for classifying three-dimensional (3D) 
protein folds. It is a 3-step scheme using the different levels of 
protein structure information in the respective steps. The 
experimental results show that we can achieve an average 
accuracy of 98.8% using it. We compare our proposed method 
against the other two protein structure classification schemes, 
namely SGM and CPMine. 
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1 Background 
 
A protein fold is a description of the overall 3D shape and the 
topological arrangement of a protein. Classification of the protein 
folds is an important task in bioinformatics. Knowledge about the 
fold class of a protein can give insights into its functions, which is 
useful in many applications such as drug discovery. 
First, we have a database of deposited 3D protein structures 
whose fold classes have been already determined (e.g., by SCOP 
[7]). After we have newly solved the 3D structure of a protein (by 
X-ray Crystallography etc.), we may want to know which of the 
known fold classes it belongs to. Then, we use the knowledge of 
the relationship between the 3D structures and the fold classes of 
the existing proteins in the database in order to predict the fold 
class of the new protein. 
People usually use the detailed structural alignment tools such as 
DALI [6] and CE [9] to look for the structurally similar proteins in 
the database, and then assign the fold class of the most similar one 
to the new protein. They are quite accurate, but slow especially 
when the database involved is large. Alternatively, people use the 
database search tools such as PSI [3] and ProteinDBS [4], or the 
dedicated protein structure classifiers such as SGM [8] and 
CPMine [1]. These methods use some form of abstract 
information (such as multi-dimensional vectors) of the 3D 
structures, rather than the direct 3D coordinates of them. They are 
fast enough to handle the large databases, but relatively less 
accurate. 
Our objective is to develop a protein fold classifier that can offer 
the near accuracy to the detailed alignment methods, while much 
faster than them (even though not as fast as the dedicated 
schemes). We propose a multi-step scheme using the relevant type 
of information and algorithm for each step. 
 
 
2 Method 
 
2.1 Filtering 
In the first step, we represent a 3D protein structure in a very 
abstract form called Protein Abstract (PA). It is a 6-tuple 
consisting of the attributes shown in Table 1.  
PA can be used to roughly distinguish a protein from one fold 
class to that from another. For example, the proteins belonging to 
All-alpha Class have very high Helix ratio and Helix count ratio  
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values as opposed to All-beta Class proteins which have very low 
values of them. 
The PA of the query protein is compared against those of all the 
proteins in the database. The threshold value for each PA attribute 
is pre-calculated for each distinct fold class in the database. Only 
the proteins which are similar enough (according to the respective 
thresholds) to the query PA are passed to the next step. On 
average, for 71% of the proteins in the database are pruned away 
in this filtering step. 

Table 1.Attributes of Protein Abstract (PA). 
Sr. Attribute 
1 No. of amino acid (AA) residues 
2 No. of SSEs 
3 SSE content  

(total length of all SSEs as a ratio of no. of residues) 
4 Helix ratio  

(total length of all helices as a ratio of total SSE length) 
5 Helix count ratio  

(no. of helices as a ratio of no. of SSEs) 
6 SSE sequence (string of H’s and E’s) 
 
2.2 Refinement 
In the second step, we represent a protein structure as a relatively 
more detailed yet still abstract structure called a CPset (Contact 
Pattern Set). A Contact Pattern (CP) is a description about the 
interaction of a pair of SSEs (secondary structure elements) in a 
protein. A CP formed by the interaction of two SSEs a and b 
consists of the attributes as shown in Table 2.  
Generally, the fold class of a protein can be determined by the 
types (helix – H or sheet – H), forms and arrangements of its 
constituent SSEs. These features of the interacting SSEs are 
effectively captured in CP representation. The proteins belonging 
to the same fold class have a greater number of similar CP pairs 
than the proteins from the different fold classes. 

Table 2. Attributes of Contact Pattern (CP). 
Sr. Attribute Upper 

Bound 
#Bins 

1 Type of CP (HH, HE, EH, EE) 3 4 
2 Difference between starting positions 

of a and b in AA sequence 
800 8 

3 Difference between positions of a and 
b in SSE sequence 

48 12 

4 Angle between a and b  180.0 16 
5 Distance between midpoints of a and b 50.0 2 
6 Nearest vertex-pair distance of a and b 50.0 8 
7 Other vertex-pair distance of a and b 80.0 2 
8 Mean of Cα – Cα distances in CP 64.0 8 
9 Standard deviation of Cα – Cα 

distances in CP 
16.0 2 

10 Contact density of CP 1.0 2 
 
A protein with n SSEs contains n(n-1)/2 distinct CPs. We 
represent each CP as a 23-bit integer by discretizing and 
concatenating its attribute values. Thus, a protein structure can be 
encoded as an ordered set of integer-valued CPs which is the 
CPset. Discretization of CPs loses some information; but the 
discretized CPs still maintain sufficient information to serve the 



purpose of structural classification. Discretization allows compact 
representation of the CPs which enables efficient processing, as 
well as the approximate matching of the original CPs by simply 
the exact matching of their discrete versions. 
The CPsets of proteins filtered from the first step are compared 
against that of the query using a linear-time merging algorithm. 
The similar score between two CPsets is calculated based on the 
number of common CPs they contain. 
The coarse score for a protein is calculated taking both its PA 
similarity score and CPset similarity score into account. 
 
2.3 Alignment 
In the final step, the best scoring protein (according to the coarse 
score) from each fold class is aligned with query using DALI 
alignment tool [6]. (We use the standalone version of DALI called 
DaliLite [5].) The detailed 3D coordinates of the proteins are used 
in this alignment step. The fold class of the best scoring protein 
(according to DALI) is returned as the answer. 
The number of proteins to be aligned with DALI is at most the 
number of all distinct fold classes. On average, only 1.6% of the 
proteins in the database are needed to be aligned. 
The overview of the proposed scheme is illustrated in Figure 1. 

 
Figure 1. Overview of the new 3-step scheme. 

 
 
3 Results and Discussion 
 
We conduct a 10-fold cross-validation classification experiment 
on a database with 600 proteins. We select 15 Folds each with 40 
members (with less than 40% sequence homology) from ASTRAL 
database [2]. The same experiment is also done on pure DALI 
search (i.e. without step 1 and 2), SGM [8] and CPMine [1]. The 
experimental results are benchmarked against the widely-used 
SCOP [7] manual classification system. The results show that the 
3-step scheme offers an average accuracy of 98.8% if we take the 
top 3 scorers into account and 94.7% if we take only the topmost 
scorer into account. The average time and accuracy comparison of 
the methods are shown in Figure 2. 
The new scheme is 6.7 times faster than the pure DALI search 
whilst providing the very close accuracy. (The time reduction is 
not proportional to the percentage of proteins aligned in the third 
step, since DALI search also applies its own filtering mechanism.) 
The accuracy of the new scheme is better than those of SGM and 
CPMine. The 3-step scheme is slower than them. However, by 

executing only the first two steps, we can make it faster than 
SGM, and as fast as CPMine. Although the accuracy of this 2-step 
process is somewhat lower than that of the original 3-step scheme, 
it is still better than those two schemes.  

 
Figure 2. Average time vs. accuracy comparison of methods. 

 
 
4 Conclusion 

 
We have presented a new multi-step scheme for protein fold 
classification. The experimental result shows that it is both 
accurate and efficient. After some future works, it can become a 
useful tool in the age of very large protein structure databases. 
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